If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16^4=49x^2
We move all terms to the left:
16^4-(49x^2)=0
We add all the numbers together, and all the variables
-49x^2+65536=0
a = -49; b = 0; c = +65536;
Δ = b2-4ac
Δ = 02-4·(-49)·65536
Δ = 12845056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12845056}=3584$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3584}{2*-49}=\frac{-3584}{-98} =36+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3584}{2*-49}=\frac{3584}{-98} =-36+4/7 $
| 2(x-1)=-13 | | 1/2(8/1r+10/1)=17/1 | | 1/2(8/1r+10/1)=17 | | -13n-53=-4n+28 | | 1,2m=0.6 | | (9/x^2+13x+36)+(4/9x+36)=0 | | 2(x+4)=4x+2 | | 8+8b+2b=b+8 | | -3(2p+4)=-6-5 | | 5^x*125^-x=25^x | | 3x^-5x-1=0 | | -51/4u=2 | | 5x/(2x-1)-4x=0 | | 13-2d=1 | | 5x/(2x-1)-4=0 | | 2(x-1)=13 | | 0.6x+14.1=x-7.34 | | -.8*(x/6)=-4 | | y+5•=9 | | 5x/(2x-1)=4x | | 2(3x+1)+8=18+3-2x | | 1/2*r=10)=17 | | -.8*(x/6)=-.4 | | 4x-6=2x-15+1x+7 | | 4/5(j=5)=2/5 | | 9x^2+36x+32=5 | | 44x+7=39 | | -5.2n=0.04 | | 1/4(1x-4)=1/2 | | x+x+3x+-7=18 | | -7x+4=-9 | | q+21=34 |